Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase
نویسندگان
چکیده
AIMS Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. RESULTS We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. INNOVATION AND CONCLUSIONS Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization.
منابع مشابه
A Novel Reaction of Peroxiredoxin 4 towards Substrates in Oxidative Protein Folding
Peroxiredoxin 4 (Prx4) is the only endoplasmic reticulum localized peroxiredoxin. It functions not only to eliminate peroxide but also to promote oxidative protein folding via oxidizing protein disulfide isomerase (PDI). In Prx4-mediated oxidative protein folding we discovered a new reaction that the sulfenic acid form of Prx4 can directly react with thiols in folding substrates, resulting in n...
متن کاملDisulfide bond oxidoreductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activity.
The extracytoplasmic assembly of the Dot/Icm type IVb secretion system (T4SS) of Legionella pneumophila is dependent on correct disulfide bond (DSB) formation catalyzed by a novel and essential disulfide bond oxidoreductase DsbA2 and not by DsbA1, a second nonessential DSB oxidoreductase. DsbA2, which is widely distributed in the microbial world, is phylogenetically distinct from the canonical ...
متن کاملRoles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium.
The catalytic properties of cysteine residues Cys46 and Cys165, which form intersubunit disulfide bonds in the peroxidatic AhpC protein of the alkyl hydroperoxide reductase (AhpR) system from Salmonella typhimurium, have been investigated. The AhpR system, composed of AhpC and a flavoprotein reductase, AhpF, catalyzes the pyridine nucleotide-dependent reduction of organic hydroperoxides and hyd...
متن کاملProtein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation.
Sulfenic acids (R-SOH) result from the stoichiometric oxidations of thiols with mild oxidants such as H2O2; in solution, however, these derivatives accumulate only transiently due to rapid self-condensation reactions, further oxidations to the sulfinic and/or sulfonic acids, and reactions with nucleophiles such as R-SH. In contrast, oxidations of cysteinyl side chains in proteins, where disulfi...
متن کاملEndoplasmic Reticulum Thiol Oxidase Deficiency Leads to Ascorbic Acid Depletion and Noncanonical Scurvy in Mice
Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2015